| Surname       | Centre<br>Number | Candidate<br>Number |
|---------------|------------------|---------------------|
| First name(s) |                  | 2                   |



### **GCE AS**





B410U10-1

### **TUESDAY, 14 MAY 2024 – MORNING**

### **CHEMISTRY – AS component 1**

## The Language of Chemistry, Structure of Matter and Simple Reactions

1 hour 30 minutes

|   | For Exa  | aminer's us     | e only          |
|---|----------|-----------------|-----------------|
|   | Question | Maximum<br>Mark | Mark<br>Awarded |
| \ | 1. to 5. | 10              |                 |
| 3 | 6.       | 9               |                 |
|   | 7.       | 14              |                 |
|   | 8.       | 6               |                 |
|   | 9.       | 10              |                 |
|   | 10.      | 21              |                 |
|   | 11.      | 10              |                 |

80

**Section A** 

### **Section B**

#### **ADDITIONAL MATERIALS**

- · A calculator, pencil and ruler
- · Data Booklet supplied by WJEC

#### **INSTRUCTIONS TO CANDIDATES**

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only. Write your name, centre number and candidate

number in the spaces at the top of this page.

**Section A** Answer **all** questions. **Section B** Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

#### **INFORMATION FOR CANDIDATES**

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The assessment of the quality of extended response (QER) will take place in **Q7**(a)(iv).



**Total** 

**SECTION A** 

Examiner only

Answer all questions.

1. Silver chloride can be precipitated by the following reaction.

AgNO<sub>3</sub>(aq) + NaCl(aq) 
$$\longrightarrow$$
 AgCl(s) + NaNO<sub>3</sub>(aq)  
 $M_r$  170  $M_r$  58.5  $M_r$  143.5  $M_r$  85

Calculate the atom economy for the production of silver chloride.

Atom economy = ..... %

2. When phosphoric(V) acid,  $H_3PO_4$ , is neutralised with sodium hydroxide, sodium phosphate is produced.

Complete and balance the equation for the reaction.

[2]

[1]



**3.** There are four types of orbitals found in an atom -s, p, d and f.

(a) Give the meaning of the term orbital.

[1]

.....

(b) Identify the shape of a *p*-orbital by circling the correct diagram.

[1]







4. Calcium hydroxide decomposes on heating as shown below.

 $Ca(OH)_2(s)$   $\longrightarrow$  CaO(s) +  $H_2O(g)$ 

Calculate the maximum mass of calcium oxide that can be produced when 75.0 g of calcium hydroxide is heated. [2]

Mass of calcium oxide = .....g

| 5. | Ester | rs are made by the reaction of carboxylic acids with alcohols. Once the reagents are d the reaction is left to reach dynamic equilibrium. |     | Examir<br>only |
|----|-------|-------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------|
|    | (a)   | Give the meaning of the term dynamic equilibrium.                                                                                         | [1] |                |
|    |       |                                                                                                                                           |     |                |
|    | (b)   | An example of an esterification reaction is given below.                                                                                  |     |                |
|    |       | $CH_3OH$ + $HCOOH$ $\Longrightarrow$ $HCOOCH_3$ + $H_2O$                                                                                  |     |                |
|    |       | Write an expression for $K_c$ , the equilibrium constant, for this reaction.                                                              |     |                |
|    |       | Give the unit, if any, for $K_c$ .                                                                                                        | [2] |                |
|    |       |                                                                                                                                           |     |                |
|    |       |                                                                                                                                           |     |                |
|    |       |                                                                                                                                           |     |                |
|    |       |                                                                                                                                           |     |                |
|    |       |                                                                                                                                           |     |                |
|    |       | Unit                                                                                                                                      |     |                |
|    |       |                                                                                                                                           |     |                |
|    |       |                                                                                                                                           |     | 10             |
|    |       |                                                                                                                                           |     |                |
|    |       |                                                                                                                                           |     |                |
|    |       |                                                                                                                                           |     |                |
|    |       |                                                                                                                                           |     |                |
|    |       |                                                                                                                                           |     |                |
|    |       |                                                                                                                                           |     |                |
|    |       |                                                                                                                                           |     |                |



## **BLANK PAGE**

# PLEASE DO NOT WRITE ON THIS PAGE



|       |                                                                                       | $\neg$ |
|-------|---------------------------------------------------------------------------------------|--------|
|       | SECTION B                                                                             |        |
|       | Answer all questions.                                                                 |        |
| This  | question is about some aspects of the chemistry of the noble gases.                   |        |
| (a)   | Explain why the noble gases exist as monatomic particles. [2                          | 2]     |
|       |                                                                                       |        |
| ••••• |                                                                                       |        |
| (b)   | Explain why argon has a very low boiling temperature. [                               | 1]     |
|       |                                                                                       |        |
| (c)   | The first ionisation energy of argon is 1521 kJ mol <sup>-1</sup> .                   |        |
| (-)   | Calculate the frequency of the high energy photon needed to ionise an Ar atom to form |        |
|       | an Ar <sup>+</sup> ion. Give your answer in <b>MHz</b> . [3                           | 3]     |
|       |                                                                                       |        |
|       |                                                                                       |        |
|       |                                                                                       |        |
|       |                                                                                       |        |
|       |                                                                                       |        |
|       |                                                                                       |        |
|       |                                                                                       |        |
|       |                                                                                       |        |
|       |                                                                                       |        |
|       | Frequency = MH                                                                        | ا جا   |



Examiner only

PMT

| (d) |      | re are many radioactive isotopes of radon. The most stable has a relative isotopic s of 222.               |    |
|-----|------|------------------------------------------------------------------------------------------------------------|----|
|     | (i)  | Give the meaning of the term relative isotopic mass.                                                       | 1] |
|     | (ii) | Write an equation for the formation of <sup>218</sup> Po by the radioactive decay of <sup>222</sup> Rn. [3 | 2] |
|     |      |                                                                                                            |    |



| (a) | Carb  | oon forms covalent bonds in trichloromethane and diamond.                                                                                       | E   |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | (i)   | Give the meaning of the term covalent bond.                                                                                                     | [1] |
|     | (ii)  | Draw a dot and cross diagram to show the bonding in trichloromethane, CHCl <sub>2</sub> Show outer electrons only.                              |     |
|     |       |                                                                                                                                                 |     |
|     |       |                                                                                                                                                 |     |
|     | (iii) | A student proposed that the $CI - \hat{C} - CI$ bond angle in trichloromethane multiple slightly larger than the $H - \hat{C} - CI$ bond angle. | st  |
|     |       | Suggest a reason why this might be true.                                                                                                        | [1] |
|     |       |                                                                                                                                                 |     |
|     |       |                                                                                                                                                 |     |
|     |       |                                                                                                                                                 |     |
|     |       |                                                                                                                                                 |     |
|     |       |                                                                                                                                                 |     |



| (iv)  | The melting temperature of diamond is over 4000 °C whereas the melting temperature of trichloromethane is only –63.5 °C.                                                       |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Compare and contrast the structures of trichloromethane and diamond.  Explain why the melting temperature of diamond is so high compared to that of trichloromethane.  [6 QER] |
|       |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
| ••••• |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
| ••••• |                                                                                                                                                                                |
| ••••• |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
| ••••• |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
|       |                                                                                                                                                                                |
| ••••• |                                                                                                                                                                                |



© WJEC CBAC Ltd. (B410U10-1) Turn over.

4100101

| (b) | Boro  | on is in Group 3 of the Periodic Table.                                               |     |
|-----|-------|---------------------------------------------------------------------------------------|-----|
|     | (i)   | Explain why the bond angles in boron trifluoride, BF <sub>3</sub> , are exactly 120°. | [2] |
|     | ••••• |                                                                                       |     |
|     |       |                                                                                       |     |
|     | (ii)  | Boron trifluoride forms a compound with ammonia, NH <sub>3</sub> .                    |     |
|     |       | Suggest how a bond forms between the nitrogen atom and the boron atom.                | [2] |
|     |       |                                                                                       |     |
|     |       |                                                                                       |     |
|     |       |                                                                                       |     |
|     |       |                                                                                       |     |
|     | ••••• |                                                                                       |     |
|     |       |                                                                                       |     |
|     |       |                                                                                       |     |
|     |       |                                                                                       |     |
|     |       |                                                                                       |     |
|     |       |                                                                                       |     |
|     |       |                                                                                       |     |
|     |       |                                                                                       |     |



© WJEC CBAC Ltd. (B410U10-1)

| 3. | Gold | leaf is | s gold that has been hammered into very thin sheets and it is usually 0.1 $\mu$ m thick                                                             | .     |
|----|------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|    | (a)  | Expl    | ain why gold is malleable.                                                                                                                          | [1]   |
|    | (b)  | The     | density of pure gold is 19.32 g cm <sup>-3</sup> .                                                                                                  |       |
|    |      | (i)     | Calculate the number of gold atoms present in a square of pure gold leaf that is $3.0\mathrm{cm}\times3.0\mathrm{cm}$ and $0.1\mu\mathrm{m}$ thick. | [3]   |
|    |      |         |                                                                                                                                                     |       |
|    |      |         |                                                                                                                                                     |       |
|    |      |         |                                                                                                                                                     |       |
|    |      |         | Number of atoms =                                                                                                                                   |       |
|    |      | (ii)    | Pure gold is 24-karat but the most commonly used gold is 22-karat yellow gold                                                                       |       |
|    |      |         | Calculate the number of moles of gold in a 1.0 cm <b>cube</b> of 22-karat yellow gold.                                                              | [2]   |
|    |      |         |                                                                                                                                                     |       |
|    |      |         |                                                                                                                                                     |       |
|    |      |         |                                                                                                                                                     |       |
|    |      |         |                                                                                                                                                     |       |
|    |      |         | Number of moles =                                                                                                                                   | mol _ |
|    |      |         |                                                                                                                                                     |       |
|    |      |         |                                                                                                                                                     |       |

© WJEC CBAC Ltd. (B410U10-1)

Examiner only

**9.** When calcium carbonate is heated the following reaction occurs.

$$CaCO_3(s)$$
  $\longrightarrow$   $CaO(s)$  +  $CO_2(g)$ 

(a) Name this type of reaction.

[1]

(b) This reaction was carried out in a laboratory using the apparatus shown.



The following results were obtained.

| Mass of empty crucible/g                  | 9.732 |
|-------------------------------------------|-------|
| Mass of crucible and CaCO <sub>3</sub> /g | 9.908 |
| Mass of crucible and CaO/g                | 9.842 |

- (i) The reaction did not go to completion.
  - I. Calculate the maximum possible number of moles of carbon dioxide that could be produced. [1]

Moles of carbon dioxide = ..... mol



© WJEC CBAC Ltd.

|     | II. Calculate the percentage yield of carbon dioxide in this reaction.                                                                                     | [2]             |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|     |                                                                                                                                                            |                 |
|     | Yield =                                                                                                                                                    | %               |
|     | (ii) Describe and explain how the yield of calcium oxide can be maximised.                                                                                 | [2]             |
|     |                                                                                                                                                            |                 |
| (c) | Calculate the volume occupied by $3.75\times 10^{-3}$ mol of carbon dioxide at a temperatur 800 °C and 2 atm pressure. Give your answer in $\text{cm}^3$ . | e of [4]        |
|     |                                                                                                                                                            | 1.1             |
|     |                                                                                                                                                            |                 |
|     |                                                                                                                                                            |                 |
|     |                                                                                                                                                            |                 |
|     |                                                                                                                                                            |                 |
|     | Volume =                                                                                                                                                   | cm <sup>3</sup> |
|     |                                                                                                                                                            |                 |



Turn over.

| (a)   | A st         | udent wanted to make a solutior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n of magnesium s                                                                                                       | ulfate.                                                                   |                                                                    |
|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|
|       | Give<br>solu | e a description, including quantit<br>tion of 1.00 mol dm <sup>-3</sup> magnesiur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ies, of how she con sulfate ( <i>M</i> <sub>r</sub> 120.4                                                              | ould make 250 cm<br>4).                                                   | n <sup>3</sup> of an aqueous<br>[4                                 |
|       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                           |                                                                    |
|       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                           |                                                                    |
| ••••• |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                           |                                                                    |
| ••••• |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                           |                                                                    |
|       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                           |                                                                    |
| ••••• |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                           |                                                                    |
|       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                           |                                                                    |
|       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |                                                                           |                                                                    |
| (b)   |              | solution she obtained was sligh contaminated with magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                        | is showed that th                                                         | e original solid                                                   |
| (b)   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hydroxide.                                                                                                             |                                                                           | e original solid<br>[1                                             |
| (b)   | was          | contaminated with magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hydroxide.                                                                                                             |                                                                           | _                                                                  |
| (b)   | was          | contaminated with magnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hydroxide. n appeared cloud                                                                                            | y.                                                                        | [1                                                                 |
| (b)   | was<br>(i)   | Contaminated with magnesium  Give a reason why the solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hydroxide.  n appeared cloud  vel of impurity by ore magnesium sul rated 25.0 cm <sup>3</sup> sa                       | ly.<br>carrying out a bac<br>lfate to 100 cm <sup>3</sup> o               | [1<br>ck titration.<br>f 0.40 mol dm <sup>-3</sup>                 |
| (b)   | was<br>(i)   | Contaminated with magnesium  Give a reason why the solution  She decided to assess the level of the impurity o | hydroxide.  n appeared cloud  vel of impurity by or  re magnesium sul  rated 25.0 cm <sup>3</sup> sa  n hydroxide.     | ly.<br>carrying out a bac<br>lfate to 100 cm <sup>3</sup> o               | [1<br>ck titration.<br>f 0.40 mol dm <sup>-3</sup>                 |
| (b)   | was<br>(i)   | Contaminated with magnesium  Give a reason why the solution  She decided to assess the level she added 0.50 g of the impuring hydrochloric acid. She then tith 1.00 mol dm <sup>-3</sup> aqueous sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | hydroxide.  n appeared cloud  vel of impurity by or  re magnesium sul  rated 25.0 cm <sup>3</sup> sa  n hydroxide.     | ly.<br>carrying out a bac<br>lfate to 100 cm <sup>3</sup> o               | [1<br>ck titration.<br>f 0.40 mol dm <sup>-3</sup>                 |
| (b)   | was<br>(i)   | Contaminated with magnesium  Give a reason why the solution  She decided to assess the lev  She added 0.50 g of the impur hydrochloric acid. She then tit 1.00 mol dm <sup>-3</sup> aqueous sodium  Her results are given in the tal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hydroxide.  n appeared cloud  vel of impurity by or  re magnesium sul rated 25.0 cm <sup>3</sup> sa n hydroxide.  ble. | carrying out a bac<br>fate to 100 cm <sup>3</sup> or<br>mples of her solu | [1<br>ck titration.<br>f 0.40 mol dm <sup>-3</sup><br>tion against |



Titre/cm<sup>3</sup>

© WJEC CBAC Ltd. (B410U10-1)

| ∃Examine |                                                                                             |      |
|----------|---------------------------------------------------------------------------------------------|------|
| only     | the table and use the data to calculate a mean titre. [1]                                   | I.   |
|          | Mean titre =cm <sup>3</sup>                                                                 |      |
|          |                                                                                             |      |
|          | the number of moles of hydrochloric acid that reacted with the agnesium sulfate sample. [3] | II.  |
|          |                                                                                             |      |
|          |                                                                                             |      |
|          |                                                                                             |      |
|          |                                                                                             |      |
|          | Moles of HCl = mol                                                                          |      |
|          | ric acid reacts with magnesium hydroxide as shown.                                          | III. |
|          | + $Mg(OH)_2$ $\longrightarrow$ $MgCl_2$ + $2H_2O$                                           |      |
|          | the percentage purity by mass of the impure magnesium sulfate. [3]                          |      |
|          |                                                                                             |      |
|          |                                                                                             |      |
|          |                                                                                             |      |
|          |                                                                                             |      |
|          |                                                                                             |      |
|          | Purity = %                                                                                  |      |
|          |                                                                                             |      |



|       | IV.   | Calculate the percentage error in the titre value of titration number 1.                                                                                                                                                    | [1]             |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|       |       |                                                                                                                                                                                                                             | 0.4             |
|       |       | Percentage error =                                                                                                                                                                                                          | %               |
|       | V.    | The student realised that this percentage error was significant and decided to repeat the experiment using hydrochloric acid of concentration 1.00 mol dm <sup>-3</sup> instead of the original 0.40 mol dm <sup>-3</sup> . | n               |
|       |       | State whether or not this change would reduce the percentage error.                                                                                                                                                         |                 |
|       |       | Justify your answer by calculating and commenting upon the new titre va                                                                                                                                                     | alue.<br>[4]    |
|       |       |                                                                                                                                                                                                                             |                 |
|       |       |                                                                                                                                                                                                                             |                 |
|       |       |                                                                                                                                                                                                                             |                 |
|       |       |                                                                                                                                                                                                                             |                 |
|       |       |                                                                                                                                                                                                                             |                 |
|       |       |                                                                                                                                                                                                                             |                 |
|       |       | New titre value =                                                                                                                                                                                                           | cm <sup>3</sup> |
|       |       |                                                                                                                                                                                                                             | •••••           |
|       | ••••• |                                                                                                                                                                                                                             |                 |
| (iii) |       | e how a flame test could be used to prove that the impurity was <b>not</b> calciu oxide.                                                                                                                                    | m<br>[1]        |
|       |       |                                                                                                                                                                                                                             |                 |



© WJEC CBAC Ltd.

|      |     | 1/                                                                                                                                                 |              |
|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| (iv) | I.  | Calculate the pH of 0.40 mol dm <sup>-3</sup> hydrochloric acid. [1]                                                                               | Examine only |
|      |     | pH =                                                                                                                                               |              |
|      | II. | Suggest how the pH of $0.40\mathrm{moldm^{-3}}$ sulfuric acid would differ, if at all, from the pH of $0.40\mathrm{moldm^{-3}}$ hydrochloric acid. |              |
|      |     | Justify your answer. [2]                                                                                                                           | ]            |
|      |     |                                                                                                                                                    |              |
|      |     |                                                                                                                                                    |              |
|      |     |                                                                                                                                                    | 21           |
|      |     |                                                                                                                                                    | 21           |
|      |     |                                                                                                                                                    |              |
|      |     |                                                                                                                                                    |              |
|      |     |                                                                                                                                                    |              |
|      |     |                                                                                                                                                    |              |
|      |     |                                                                                                                                                    |              |
|      |     |                                                                                                                                                    |              |
|      |     |                                                                                                                                                    |              |
|      |     |                                                                                                                                                    |              |
|      |     |                                                                                                                                                    |              |
|      |     |                                                                                                                                                    |              |



Turn over.

|     |                                                                                                  |                                                                                                           | Examir                |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|
| 11. | Bromine can be extracted from seawater and other water sources by the oxidation of bromide ions. |                                                                                                           |                       |  |  |  |  |
|     | (a)                                                                                              | Write a half-equation for the oxidation of bromide ions.                                                  | [1]                   |  |  |  |  |
|     | (b)                                                                                              | State why this reaction is described as an oxidation reaction.                                            | [1]                   |  |  |  |  |
|     | (c)                                                                                              | Chlorine can be used as an oxidising agent.  Explain why chlorine can oxidise bromide ions.               | [1]                   |  |  |  |  |
|     |                                                                                                  |                                                                                                           |                       |  |  |  |  |
|     | (d)                                                                                              | The concentration of bromide ions in seawater from the Dead Sea can be as high as $12\mathrm{gdm}^{-3}$ . |                       |  |  |  |  |
|     |                                                                                                  | Calculate the maximum number of moles of bromine that can be extracted from 45 of this seawater.          | 00 m <sup>3</sup> [2] |  |  |  |  |
|     |                                                                                                  |                                                                                                           |                       |  |  |  |  |
|     |                                                                                                  |                                                                                                           |                       |  |  |  |  |
|     |                                                                                                  |                                                                                                           |                       |  |  |  |  |
|     |                                                                                                  | Number of moles =                                                                                         | mol                   |  |  |  |  |
|     |                                                                                                  |                                                                                                           |                       |  |  |  |  |
|     |                                                                                                  |                                                                                                           |                       |  |  |  |  |
|     |                                                                                                  |                                                                                                           | 1                     |  |  |  |  |



© WJEC CBAC Ltd.

|          | udent decided to investigate other halogen-halide reactions under standard pratory conditions.                                                                         |      |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (i)      | He added an aqueous solution of iodine to an aqueous solution of potassium bromide. He observed a brown colour in the test tube.                                       |      |
|          | He decided that the brown colour was due to the formation of bromine.                                                                                                  |      |
|          | Explain why the student is incorrect.                                                                                                                                  | [2]  |
|          |                                                                                                                                                                        |      |
|          |                                                                                                                                                                        |      |
|          |                                                                                                                                                                        |      |
| (ii)     | The halogen can be identified by shaking the reaction mixture with cyclohexa Two layers form and the purple colour of the cyclohexane layer shows that ioo is present. |      |
| (ii)     | Two layers form and the purple colour of the cyclohexane layer shows that iod                                                                                          |      |
| (ii)<br> | Two layers form and the purple colour of the cyclohexane layer shows that iod is present.                                                                              | dine |
| (ii)     | Two layers form and the purple colour of the cyclohexane layer shows that iod is present.                                                                              | dine |
| (ii)     | Two layers form and the purple colour of the cyclohexane layer shows that iod is present.                                                                              | dine |
| (ii)     | Two layers form and the purple colour of the cyclohexane layer shows that iod is present.                                                                              | dine |
| (ii)     | Two layers form and the purple colour of the cyclohexane layer shows that iod is present.                                                                              | dine |



Turn over. © WJEC CBAC Ltd. (B410U10-1)

| Question<br>number | Additional page, if required. Write the question number(s) in the left-hand margin. | Exam<br>onl                           |  |  |
|--------------------|-------------------------------------------------------------------------------------|---------------------------------------|--|--|
| number             | Write the question number(s) in the left-hand margin.                               |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     | ······                                |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     | 1                                     |  |  |
|                    |                                                                                     | ············]                         |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     | 1                                     |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     | · · · · · · · · · · · · · · · · · · · |  |  |
|                    |                                                                                     |                                       |  |  |
|                    |                                                                                     | 1                                     |  |  |
|                    |                                                                                     |                                       |  |  |



| Question number | Additional page, if required.<br>Write the question number(s) in the left-hand margin. | Examine only |
|-----------------|----------------------------------------------------------------------------------------|--------------|
|                 |                                                                                        | 7            |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |
|                 |                                                                                        |              |



## **BLANK PAGE**

## PLEASE DO NOT WRITE ON THIS PAGE



© WJEC CBAC Ltd.

(B410U10-1)

## **BLANK PAGE**

## PLEASE DO NOT WRITE ON THIS PAGE





# PLEASE DO NOT WRITE ON THIS PAGE

